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A Markovian theory is developed to study the efficiency of diffusion-reaction processes involving geminate
radical pairs moving on the surface of a catalyst (e.g., zeolite) support. Results obtained for the simplest
(lattice) system are corroborated by Monte Carlo calculations, and these are extended to study the effect of
system size. A kinetic model is developed to account for the results obtained and leads to the general conclusion
that the photochemical generation of a triplet pair, followed by the subsequent diffusion and eventual
recombination of the radicals Rv and RV, lengthens the mean reaction time by a factor of∼2, relative to the
case in which Rv and RV are assumed to be present at the very outset.

In most photochemical reactions, geminate radical pairs are
produced as triplet pairs. Such triplet pairs, in which both
radicals have the same spin, are inert to radical-radical
recombination reactions. A “spin flip” to a reactive singlet pair
must occur before the radicals can combine. Although several
mechanisms exist for intersystem crossing, such a spin flip can
occur through some magnetic effect in the environment acting
on one or both of the spins.1

Recent experimental studies on the photochemical production
of geminate radical pairs and their subsequent fate when
diffusing on/in the surface/interior of a zeolite have documented
the ability to control reactions in the presence or absence of
magnetic fields or magnetic impurities.2-6 In this report, we
mobilize a recently introduced approach,7-8 based on the theory
of finite Markov processes, to calculate numerically exact values

of the mean walklength〈n〉 of two simultaneously diffusing
triplet pairs before a “spin flip” occurs and permits a singlet
pair to react, eventually, upon first encounter. We also present
the results of complementary Monte Carlo calculations and
develop an analytic approach for the mean-field case to compare
the numerical results with the predictions of classical kinetic
theory.

Consider, for definiteness, the photochemical reaction involv-
ing 1,3-diphenyl acetone

For the case in which this reaction takes place on the surface
of a zeolite at some point of which there is a site S at which a
spin flip can occur (e.g., a zeolite site with a heavy-metal cation
such as Tl), the sequence of events diagrammed in Figure 1
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can be envisioned. Corresponding to this sequence, the following
model is defined:

where X1) Rv and X2) RV, and

We also allow for the following processes:

and

In steps 4 and 5, the collision of like radicals simply resets the
two radicals to their previous positions. Equation 2 makes the
implicit assumption that S-To intersystem crossing is fast on
the hopping time scale.

In the approach developed here, all possible reactant pairs
are considered. That is, at any given time, there may be present
two X1 species, two X2 species, or the pair X1 and X2.
Whatever the case, the two species ([X1, X1], [X2, X2], or [
X1, X2]) are regarded to be diffusing simultaneously on a
surface with the outcome of collisions between two species or
the encounter of a given species with the “trigger site” S,
specified by eqs 1-5. The surface itself is represented by a
lattice of periodically repeating units; specifically, we consider
an n × n square planar lattice subject to periodic boundary
conditions. The site S at which the spin flip occurs is stationary
and comprises one of the sites of the lattice.

The basis of the Markovian approach reported in ref 1 is
classification of all initial configurations of particles on the
lattice and all concerted motions corresponding to each such
configuration into symmetry-distinct states. The probability of
realizing each new configuration is then assigned from which
one can construct the transition probability matrixQ and, thence,
determine the fundamental matrixN ) (I - Q)-1 of the theory
of finite Markov processes, whereI is the identity matrix. The

mean walklength〈n〉 (as well as higher-order moments of the
underlying probability distribution function) can then be ex-
tracted from N, and the temporal behavior of the system
determined from the eigenvalues ofN. We impose the condition
that when recombination of the geminate radical pairs occurs
(step 2), the process terminates.

To illustrate the cases considered here, consider first the
results obtained on the simplest lattice, a 3× 3 square-planar
lattice, with a single “trigger site” S and subject to periodic
boundary conditions. For the reaction sequence 1-5, the mean
walklength before termination of the reaction (i.e., the recom-
bination step 2) is then found to be〈n〉 ) 18.814. This value
can be compared with the value of〈n〉 calculated for the case
of two simultaneously diffusing radicals,7 Rv and RV, where an
intervening step involving a “spin flip” is not needed to create
a singlet pair: 〈n〉 ) 8. Similarly, it can be compared with the
value of the〈n〉 calculated when one reactant of the pair, Rv
and RV, is assumed to be stationary:7 〈n〉 ) 9. We are
immediately led to the conclusion that the photochemical
generation of a triplet pair, followed by diffusion of the two
radicals until one undergoes a spin flip at the site S, followed
by subsequent diffusion and eventual recombination of the
radicals Rv and RV, lengthens the mean walklength〈n〉 (and
hence the mean reaction timeτ) by a factor of∼2, relative to
the case in which Rv and RV are assumed to present from the
very outset. Because the Markovian theory, which was mobi-
lized to calculate the〈n〉, leads to numerically exact values of
〈n〉, one has confidence in the prediction of the doubling time
noted above, given the assumptions of the model and the lattice
considered.

The problem described above can also be studied via direct
Monte Carlo simulations. A large number of realizations (∼2
× 106) was carried out, covering all possible distinguishable
initial configurations. The result of the Monte Carlo study for
the 3× 3 lattice,〈n〉 ) 18.81, is fully in accord with the value
obtained in the Markovian analysis.

To examine the effect of system size, the Monte Carlo
simulations were extended to largern × n square planar lattices,
with 4 e n e 10; the results are reported in Table 1 (fourth
column). Two conclusions may be drawn from these more
extensive calculations. First, there is further support for the
conclusion reached in the above discussion, namely, that there
is an approximate doubling of the reaction time when geminate
species Rv and Rv are created initially versus the case where Rv
and RV are present at timet ) 0 (either for the case where one
radical is stationary or both are free to diffuse, for which reaction
times were taken from ref 7). And second, the increase in〈n〉 is
smaller than the increase in the total number,L ) n × n, of
lattice sites available to the diffusing reactants, an effect
illustrated in Figure 2 (full lines).

It is interesting and relevant to compare the above results
with the predictions of a classical, mean-field kinetic approach,

Figure 1. A schematic representation of a geminate radical pair
recombination reaction.

X1 + S f X2 (1)

X1 + X2 f product (R-R) (2)

X2 + S f X1 (3)

X1 + X1 f X1 + X1 (4)

X2 + X2 f X2 + X2 (5)

TABLE 1: A Comparison of the Values of 〈n〉 as Obtained
from the Markovian and Monte Carlo Approaches (calcd) or
Estimated from the Mean Field Model, Eq 13 (est)

lattice k-1 k′-1 〈n〉 (calcd) 〈n〉 (est) percent

3 × 3 9 8 18.81 18.56 1.35
4 × 4 18.31 22.22 50.53 49.49 2.06
5 × 5 31.67 26.07 63.68 61.24 3.83
6 × 6 49.24 52.67 124.63 119.07 4.46
7 × 7 71.62 56.65 142.50 133.97 5.99
8 × 8 98.59 98.38 238.10 224.45 5.73
9 × 9 130.60 99.78 257.19 237.42 7.69

10× 10 167.41 159.70 394.80 366.65 7.13
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wherein concentration fluctuations are suppressed. Define the
doublet configurations as

Then, the kinetic scheme, eqs 1-5, above can be represented
by

with k ) 1/9 andk′ ) 1/8 for the 3× 3 lattice. The evolution
equations are

The coefficient matrixM corresponding to eqs 9-11 is

and the corresponding eigenmatrix is

This leads to the eigenvalue equation

from which the mean time for the 3× 3 lattice is determined
to be

Given a unit displacement (“hopping”) time, this estimate is in
surprising agreement with the exact value noted above, namely,
〈n〉 ) 18.814. The agreement extends to larger lattices as well,
as shown in Table 1 (fourth column) and in Figure 2 (dotted
lines). The rate constants,k andk′, for these lattices are estimated
by identifying the corresponding reaction times,k-1 and k′-1

to the mean walklength〈n〉 taken from ref 7. The values so
obtained are given in the second two columns of Table 1.

Although there exist at present no explicit experimental data
on the magnetically induced spin exchange and reaction of
radicals diffusing on zeolite lattices, there is an earlier study of
paramagnetic interactions of triplet radical pairs with nitroxide
radicals in which an unusual “antiscavenging” effect was
observed.9 This study, carried out in solution, involved radicals
and scavenger undergoing random (simultaneous) diffusion prior
to chemical scavenging of geminate radicals and nitroxide. The
analytical methods introduced in ref 7 and exploited here were
generalized in ref 8 to deal with diffusion-reaction processes
involving three simultaneously diffusing reactants. It is this
generalization that will be implemented in future work to
examine the experimental problem studied in ref 9.
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Figure 2. Dependence of reaction time〈n〉 on the lattice size. Full
and dotted lines refer, respectively, to the Markovian/Monte Carlo
results and to the estimates based on the mean field model.

a ) [X1, X1]

b ) [X1, X2]

c ) [X2, X2]
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ă ) -2k[a] + k[b] (9)
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M ) [-2k k 0
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τ ) W-1 ) 18.560
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